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About the DCT matrix  

Without going into deep academic 

Some investigations how to understand the DCT- and inverse DCT, as it is used in different 

image- and video Decoder Standards. Because I’ve written some decoders for JPEG, MPEG, 

HEVC (AVC defines its own transform, there is nothing else to do there), I had to wrap my 

head around this and computing the transform efficiently. Here we look at different order-2
n
 

DCT matrices with some spreadsheet help.  

Basics: the DCT matrix 

The discrete cosine transform (1-D DCT type-II) on a series of data points xi is defined as 
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. This equation can be written in matrix form, a matrix-vector 

multiplication of y = Mx, where x and y are vectors, and the M matrix takes its values from 
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. For example the 4-point transform is equivalent to and can be written as:  
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The matrix values are cosine of 
8


 rotated around by some integer k. On the right side the 

)( ,, jiji k  matrix has values of 







 kk

8
cos)(


  based on cosine symmetry, resulting 

in only cosines of )3,2,1,0(  with alternating signs. It can be seen that the 2-point DCT 

rotates 
4


, the 4-point rotates 

8


 around, the 8-point DCT rotates 

16


 and so forth. All the 

final cosine terms fall into the first quarter, symmetric to 
4


 with alternating signs (0 not 

drawn):  
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N=2 N=4 N=8 

4


 

8


 

16


 

0 0

1 -1  
0 0 0 0

1 3 -3 -1

2 -2 -2 2

3 -1 1 -3  

0 0 0 0 0 0 0 0

1 3 5 7 -7 -5 -3 -1

2 6 -6 -2 -2 -6 6 2

3 -7 -1 -5 5 1 7 -3

4 -4 -4 4 4 -4 -4 4

5 -1 7 3 -3 -7 1 -5

6 -2 2 -6 -6 2 -2 6

7 -5 3 -1 1 -3 5 -7  
 

We can observe the symmetries of values in the rows of these matrices. Also, in every even 

row, the same cosine values appear from the lower order DCT matrix. For example where k is 

even in the 4-point DCT matrix, there 
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, the same as in the odd rows of 

the 2-point DCT matrix. This is the basis for many fast recursive DCT computation 

algorithms (aka. recursive kernel factorization).  

The DCT as rotation  

 

One way to look at the DCT is an N-

dimensional vector transform, where rows of 

the DCT matrix are the basis vectors. 

Applying the DCT matrix on a vector rotates 

it in the N-dimensional vector space in such a 

way, that most of the length (energy) will 

concentrate in one direction (x), while the 

other vector coordinates (y, z …) will be 

small. This is only true, when all the vector 

coordinates are close to each other – as it is 

on neighboring pixel values of smooth 

images, like photographs. Some small 

coordinate values can be omitted and still 

recover the original vector closely by the 

inverse transform – thus achieving 

compression, like in JPEG. Only for illustration in 3D, something similar happens with a 

vector (red) after applying the DCT transform (blue). The transformed vector mainly points in 

the x-direction.    
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Basis vectors of the DCT matrix  

Because of the special angles chosen the (row) vectors of the DCT matrix are mutually 

orthogonal. N orthogonal vectors in the N-dimensional vector space form an orthogonal basis.  

Orthogonality can be verified by computing all dot products of every vector combinations, for 

example compute the MM
T
 matrix product in a spreadsheet (poor-man’s method). Dot 

products are commutative, a·b=b·a, and the result is a symmetric matrix with squares of 

magnitudes (“length”) of each vector along the main diagonal. For N = 4:  

Dot products 1 0.924 0.707 0.383

1 0.383 -0.707 -0.924

1 -0.383 -0.707 0.924

1 -0.924 0.707 -0.383

m0 m1 m2 m3

1 1 1 1 m0 ||m0||
2 m0·m1 m0·m2 m0·m3 4 0 0 0

0.924 0.383 -0.383 -0.924 m1 m1·m0 ||m1||
2 m1·m2 m1·m3 0 2 0 0

0.707 -0.707 -0.707 0.707 m2 m2·m0 m2·m1 ||m2||
2 m2·m3 0 0 2 0

0.383 -0.924 0.924 -0.383 m3 m3·m0 m3·m1 m3·m2 ||m3||
2 0 0 0 2

M
T

=

M M MT M MT

 

All dot products are indeed zero, which is due to sign-symmetry of the vector coordinates, 

these 4 orthogonal vectors form a basis in 4-dimension. When it comes to the magnitude of 

the four vectors, the length of the first basis vector is ||m0|| = 2, while for all the others ||mi|| = 

2 .  

It can be seen that for any order-2
n
 of these kinds of DCT matrices  

Nm 
2

0  

and  

Nmi
2

12
 .  

In other words length of Nm 0 , and length of the other basis vectors are 
2

N
mi  . 

The latter can be proven from that all coordinates are symmetric cosine terms with alternating 

signs; all angles are symmetric to 
4


, and based on the trigonometric identities of 

     2cos1
2

1
cos2   and of      2cos1

2

1
sin2  . All  2cos  falls out of the 

equation and the sum (the square of magnitude) will be .
2

1
N  
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Normalization of the DCT matrix  

We could use the previous matrix equations for the DCT and the inverse DCT (the matrix is 

invertible), but in praxis the DCT uses a normalized form of these vectors, making the matrix 

and the transform orthonormal. An orthonormal basis is orthogonal, but with orthogonal unit 

vectors. Normalization is just scaling the row vectors uniformly in all directions that the 

length will be 1. This preserves orthogonality. Normalization of the N=4 matrix can be 

described as follows:  

 

1. First normalize m0 by a factor f0 to the length of the other mi basis vectors (“equalized 

DCT matrix”) by solving 
2

0

N
Nf  . We get 

2

1
0 f . Scaling m0 by 

2

1
 obtains 

the following matrix, where every vector has a magnitude of 2 : 

 

 

0.707 0.707 0.707 0.707 0.707 0.924 0.707 0.383 2 0 0 0

0.924 0.383 -0.383 -0.924 0.707 0.383 -0.707 -0.924 0 2 0 0

0.707 -0.707 -0.707 0.707 0.707 -0.383 -0.707 0.924 0 0 2 0

0.383 -0.924 0.924 -0.383 0.707 -0.924 0.707 -0.383 0 0 0 2

=

M MT M MT

 
 

 

2. Then scale all vectors by a factor of f so that all magnitude is one, becoming unit vectors. 

By solving 1
2


N
f  we get 

N
f

2
 . Finishing the normalization by scaling every mi 

above by 
2

1
f  obtains the orthonormal order-4 DCT matrix with 4 orthonormal unit 

vectors:  

 
0.5 0.5 0.5 0.5 0.5 0.653 0.5 0.271 1 0 0 0

0.653 0.271 -0.271 -0.653 0.5 0.271 -0.5 -0.653 0 1 0 0

0.5 -0.5 -0.5 0.5 0.5 -0.271 -0.5 0.653 0 0 1 0

0.271 -0.653 0.653 -0.271 0.5 -0.653 0.5 -0.271 0 0 0 1

=

M M
T

M M
T

 
 

 

Looking at other order-2
n
 matrices, there is an interesting relationship. The scaling factor for 

the first row vector, 
2

1
0 f  is independent of N and will be the same for all “equalized” 

matrices (that is all vector coordinates will be 
2

1
). After step 1 all row vectors have the 

same magnitude: 
2

N
mi  . The matrix is a linearly scaled version of the orthonormal N-

point DCT matrix. Computing MM
T
 after step 1 reveals the scaling factor for step 2 in the 

squares of magnitudes along the main diagonal:  
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N 
“Equalized DCT” 

After Step 1 

||mi|| 

length MM
T
 

2f  f  

2 
0.707 0.707

0.707 -0.707  
1 

1 0

0 1  
1 1 

4 

0.707 0.707 0.707 0.707

0.924 0.383 -0.383 -0.924

0.707 -0.707 -0.707 0.707

0.383 -0.924 0.924 -0.383  

2  

2 0 0 0

0 2 0 0

0 0 2 0

0 0 0 2   
2

1
 2

1

4

22


N
f

 

8 

0.707 0.707 0.707 0.707 0.707 0.707 0.707 0.707

0.981 0.831 0.556 0.195 -0.195 -0.556 -0.831 -0.981

0.924 0.383 -0.383 -0.924 -0.924 -0.383 0.383 0.924

0.831 -0.195 -0.981 -0.556 0.556 0.981 0.195 -0.831

0.707 -0.707 -0.707 0.707 0.707 -0.707 -0.707 0.707

0.556 -0.981 0.195 0.831 -0.831 -0.195 0.981 -0.556

0.383 -0.924 0.924 -0.383 -0.383 0.924 -0.924 0.383

0.195 -0.556 0.831 -0.981 0.981 -0.831 0.556 -0.195  

2 

4 0 0 0 0 0 0 0

0 4 0 0 0 0 0 0

0 0 4 0 0 0 0 0

0 0 0 4 0 0 0 0

0 0 0 0 4 0 0 0

0 0 0 0 0 4 0 0

0 0 0 0 0 0 4 0

0 0 0 0 0 0 0 4  

4

1
 

2

1

8

22


N
f  

16  8  8 I16 
8

1
 8

1

16

22
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N
f

 

32  4 16 I32 
16

1
 

4

1

32

22
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N
f  

2
n 

 
1

2
n

 
2

n-1
 IN 2

-(n-1)
 

)1(

2



n

f  

 

This factor “2” relationship will have importance in HEVC, where the same matrix is used for 

all transform sizes of N = 4, 8, 16 and 32 (see below).  

It also gives possibilities to calculate the transform with any scalar scaled version of the DCT 

matrix, possibly giving some simplifications for the calculation, and then simply divide the 

results at the end. For example the N=8 matrix after step 1 in the table above can also be used 

for the DCT, then divide the results by 2. In formula Mx = (fM)x  = f(Mx). This is how the 

LLM works (see below).  
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The 2-D DCT  
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According to this equation computing the N=8 (8×8) transform is a series of 8×8×8×8 = 4096 

multiplications by irrational numbers. For a fast image/video codec this is unacceptable. Most 

fast algorithms use the separability of the 2-D transform to successive 1-D row- and column 

transforms. By doing that the matrix form for the 2-D DCT transform becomes:  

 

Y = M X M
T
 

 

 Column then row transform: Y = ( M X ) M
T
 

 Row then column transform: Y = M ( X M
T
 ) 

 

For the inverse transform, when M is orthonormal:  

 

X = M
-1

 Y M = M
T
 Y M 

 

 Column then row transform:  X = ( M
T
 Y ) M 

 Row then column tra4nsform: X = M
T
 ( Y M ) 

 

This shows that the order of row/column or column/row leads to the same result – based on 

matrix product associativity. Here demonstrated by a live example during JPEG image 

decoding, 2-D inverse DCT of an 8×8 decoded coefficient block. We get the same results:  

 

904 -89 55 31 26 24 14 4 221.5 -97.94 49.99 19.81 29.24 39.5 5.202 5.429 84 12 30 63 66 92 139 141

-183 -109 67 8 27 34 11 0 209.4 -106.1 43.98 17.13 26.55 20.37 12.76 3.933 67 10 28 52 69 96 124 145

-61 -37 -16 14 16 25 5 10 279.1 -42.93 43.26 17.92 7.865 19.91 16.94 -0.872 117 67 76 78 79 115 125 133

22 -36 23 1 2 1 -16 -2 330.8 3.567 8.374 -5.968 11.84 0.289 3.618 -2.836 125 115 116 120 113 110 110 127

2 32 -12 -5 -3 -6 0 3 360.9 -10.07 33.75 8.357 -10.36 -14.1 0.514 -1.453 134 140 116 100 117 134 135 145

25 25 -12 -9 4 10 -6 -3 395 -27.55 17.63 9.565 6.518 0.051 -6.185 -2.248 139 132 118 131 139 144 155 159

14 1 8 8 0 9 3 0 392.1 5.408 -10.12 6.292 0.08 2.099 -3.722 0.601 139 139 138 143 145 140 138 127

3 6 16 8 -15 0 3 0 368.2 23.84 -31.3 14.57 1.803 -0.232 10.46 8.759 137 125 143 137 149 137 113 100

904 -89 55 31 26 24 14 4 333.2 261.6 270.4 291.4 310 342.3 367.4 380.6 84 12 30 63 66 92 139 141

-183 -109 67 8 27 34 11 0 -62.78 -129.3 -112.9 -86.93 -89.49 -51.1 -3.739 18.58 67 10 28 52 69 96 124 145

-61 -37 -16 14 16 25 5 10 -26.75 -64.38 -32.4 -11.48 -7.467 -11.3 -0.809 -17.94 117 67 76 78 79 115 125 133

22 -36 23 1 2 1 -16 -2 -1.107 3.864 -15.95 -1.471 3.315 6.504 33.86 33.2 125 115 116 120 113 110 110 127

2 32 -12 -5 -3 -6 0 3 6.343 15.37 16.07 5.735 4.645 -7.939 -16.43 -18.14 134 140 116 100 117 134 135 145

25 25 -12 -9 4 10 -6 -3 14.57 15.1 18.04 27.51 6.377 -4.137 0.699 -7.442 139 132 118 131 139 144 155 159

14 1 8 8 0 9 3 0 15.54 0.317 2.037 2.297 -0.937 7.572 9.873 2.903 139 139 138 143 145 140 138 127

3 6 16 8 -15 0 3 0 9.991 9.754 2.432 -13.84 -10.57 6.945 6.326 -2.546 137 125 143 137 149 137 113 100

transform coefficients

transform coefficients row transform col transform

ImageProxy.jpg first block decoded coefficients col transform row transform

 
 

 

Computing the N=8 (8×8) transform by this method requires only (8+8)×64 = 1024 

multiplications – compared to the original formula with 4096 multiplications.  
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Scaled DCT: LLM  

When computing the 2-D transform with the row/column method the same matrix is applied 

twice on the input block. This gives possibilities to use some scaled version of the 

orthonormal DCT matrix, in which it is simpler to calculate the vector-matrix product. The 

results are then down-scaled at the end. This is how the LLM method works: the orthogonal 

8-point DCT matrix is scaled by 22 (or any equalized order-2
n
 matrix by 2 ), which 

yields:  

 

1 1 1 1 1 1 1 1

1.387 1.176 0.786 0.276 -0.276 -0.786 -1.176 -1.387

1.307 0.541 -0.541 -1.307 -1.307 -0.541 0.541 1.307

1.176 -0.276 -1.387 -0.786 0.786 1.387 0.276 -1.176

1 -1 -1 1 1 -1 -1 1

0.786 -1.387 0.276 1.176 -1.176 -0.276 1.387 -0.786

0.541 -1.307 1.307 -0.541 -0.541 1.307 -1.307 0.541

0.276 -0.786 1.176 -1.387 1.387 -1.176 0.786 -0.276                    

8 0 0 0 0 0 0 0

0 8 0 0 0 0 0 0

0 0 8 0 0 0 0 0

0 0 0 8 0 0 0 0

0 0 0 0 8 0 0 0

0 0 0 0 0 8 0 0

0 0 0 0 0 0 8 0

0 0 0 0 0 0 0 8

 M MT

 
 

Here y0 and y4 can be computed without multiplications – and among other simplifications 

reaches the LLM method computing the 8-point transform with only 11 multiplications. 

Because this matrix is applied twice on the input block, after successive row- and column 

transformation the results are over scaled by 8)22( 2  . Dividing by 8 at the end is just 

right shift – a very fast operation for the CPU ALU. Computing the magnitudes of these (row) 

vectors all give 8 .  

 

Scaled integer DCT: HEVC  

HEVC defines an integer transform process together with one 32×32 integer transform matrix 

used for various transform sizes. The integer matrix is based on the orthogonal 4-point DCT-

II formula, which yields:  

 

K = 

0,5 0,5 0,5 0,5

0,653 0,271 -0,271 -0,653

0,5 -0,5 -0,5 0,5

0,271 -0,653 0,653 -0,271  

 

K multiplied by 128 and rounded to nearest integer is very similar to M4, the 4×4 integer 

transform matrix defined by HEVC:  

 

 


























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35848435

64646464

84353584

64646464

128K
            




























36838336

64646464

83363683

64646464

4M
 

 

The Standard defines the inverse integer 2-D transform (decoder) by the row/column method, 

with column transform first, and after each transform the results are right-shifted (with 
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rounding). The 1-D inverse integer transform of vector y (decoded coefficients) can be 

computed using integer arithmetic as:  

 

  7)(
128

1
 MyMyx .  

 

The 2-D inverse integer transform with the row/column method applies this matrix twice on 

the input matrix Y according to:  

 

MYMX T )( .   

 

It can be computed as:  

 

    77  MYMX T
, obtaining the reconstructed image sample values.   

 

For higher order-N integer transforms the original scaling of the order-4 integer matrix is 

kept. For the 8-point integer transform the following matrix is used:  

 

M8 = 

64 64 64 64 64 64 64 64

89 75 50 18 -18 -50 -75 -89

84 35 -35 -84 -84 -35 35 84

75 -18 -89 -50 50 89 18 -75

64 -64 -64 64 64 -64 -64 64

50 -89 18 75 -75 -18 89 -50

35 -84 84 -35 -35 84 -84 35

18 -50 75 -89 89 -75 50 -18  

 

We’ve seen the relationships earlier before different order-2
n
 DCT matrices, M8 in this form is 

overscaled by 2 compared to M4. Applying this matrix twice overscales the results by 2. 

Division by 2 can be easily incorporated in the previous integer equation as:  

 

    87  MYMX T
   

 

For the 16-point transform by >> 9, and for the 32-point transform by >> 10. This is how the 

same matrix – as defined by the Standard – can be used for all transform sizes.  

 

 

End 
 


